Transcriptional Repression of Gata3 Is Essential for Early B Cell Commitment

نویسندگان

  • Anupam Banerjee
  • Daniel Northrup
  • Hanane Boukarabila
  • Sten Erik W. Jacobsen
  • David Allman
چکیده

The mechanisms underlying the silencing of alternative fate potentials in very early B cell precursors remain unclear. Using gain- and loss-of-function approaches together with a synthetic Zinc-finger polypeptide (6ZFP) engineered to prevent transcription factor binding to a defined cis element, we show that the transcription factor EBF1 promotes B cell lineage commitment by directly repressing expression of the T-cell-lineage-requisite Gata3 gene. Ebf1-deficient lymphoid progenitors exhibited increased T cell lineage potential and elevated Gata3 transcript expression, whereas enforced EBF1 expression inhibited T cell differentiation and caused rapid loss of Gata3 mRNA. Notably, 6ZFP-mediated perturbation of EBF1 binding to a Gata3 regulatory region restored Gata3 expression, abrogated EBF1-driven suppression of T cell differentiation, and prevented B cell differentiation via a GATA3-dependent mechanism. Furthermore, EBF1 binding to Gata3 regulatory sites induced repressive histone modifications across this region. These data identify a transcriptional circuit critical for B cell lineage commitment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate.

The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing r...

متن کامل

GATA family transcriptional factors: emerging suspects in hematologic disorders

GATA transcription factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The three important GATA transcription factors GATA1, GATA2 and GATA3 play essential roles in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and megakaryocytic commitment during hematopoiesis. GATA2 is crucial for...

متن کامل

Gata3 restrains B cell proliferation and cooperates with p18INK4c to repress B cell lymphomagenesis

GATA3, a lineage specifier, controls lymphoid cell differentiation and its function in T cell commitment and development has been extensively studied. GATA3 promotes T cell specification by repressing B cell potential in pro T cells and decreased GATA3 expression is essential for early B cell commitment. Inherited genetic variation in GATA3 has been associated with lymphoma susceptibility. Howe...

متن کامل

Pax5 maintains cellular identity by repressing gene expression throughout B cell differentiation.

The transcription factor Pax5 is required for many aspects of B-lymphopoiesis including lineage commitment, immunoglobulin rearrangement, pre-BCR signalling and mature B cell survival. Pax5 regulates B cell lineage commitment by concurrently activating cell specific gene expression as well as suppressing the expression of genes associated with non-B cell fates. The identity of the molecular tar...

متن کامل

Dysfunction of the Reciprocal Feedback Loop between GATA3- and ZEB2-Nucleated Repression Programs Contributes to Breast Cancer Metastasis.

How loss-of-function of GATA3 contributes to the development of breast cancer is poorly understood. Here, we report that GATA3 nucleates a transcription repression program composed of G9A and MTA3-, but not MTA1- or MTA2-, constituted NuRD complex. Genome-wide analysis of the GATA3/G9A/NuRD(MTA3) targets identified a cohort of genes including ZEB2 that are critically involved in epithelial-to-m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013